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The Conformation of Non-Aromatic Ring Compounds.
VIIL.* The Crystal Structure of cis-2,3-Dichloro-1,4-dioxane at —1490 °C

By C. Avtona AND C. ROMERS

Laboratory of Organic Chemistry, University of Leiden, The Netherlands

(Recetved 28 January 1963)

cis-2,3-Dichloro-1,4-dioxane crystallizes in the orthorhombic system, space group P2,2,2,, Z =4, and
a=4-463, b=10-67, c=13-13 A at —140°C.

The structure was refined in three projections by means of data obtained at about — 140 °C with

molybdenum radiation.

The dioxane ring has the chair form. The two carbon—chlorine bonds are unequal in length:
C(1)-Cl(1) (axial) =1-819 +0-009 A, C(2)-Cl(2) (equatorial)=1-781 +0-007 A.

Introduction

It seemed worthwhile to determine the structure of
cts-2,3-dichloro-1,4-dioxane by X-ray methods, since
this compound is the only known dihalogeno-1,4-di-
oxane in which an equatorial carbon-halogen bond
was expected to be present (Altona, Romers &
Havinga, 1959).

Experimental
cts-2,3-Dichloro-1,4-dioxane was prepared by chlorina-

tion of a refluxing mixture of 1,4-dioxane and carbon

* Part VII: Altona, Knobler & Romers (1963); for earlier
parts see van Dort & Havinga (1963).

tetrachloride (Summerbell & Lunk, 1957). The com-
pound crystallizes from carbon tetrachloride as
colourless needles, elongated along the a axis. The
crystals are soft and tend to disintegrate when even
slight pressure is applied in directions perpendicular
to the needle axis. After several trials some good
crystals were obtained that could be cut along [010]
and [001]. Their cross sections were roughly hexagonal
with faces {001} and {011} about equally developed.
A central capillary hole with a radius of approximately
0:02 mm ran along the full length of all these needles.

The dimensions of the unit cell were determined
from zero-layer Weissenberg photographs taken with
unfiltered Cu K« radiation (1=1-5418 A) about [100],
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[010], and [001] at —140 °C. The powder diffraction
lines of aluminum (¢=4-0189 A at 20 °C) were super-
posed on the films.

Crystal data

¢1s-2,3-Dichloro-1,4-dioxane, C4H¢O2Clz, m.p. 53-5—
54 °C. Orthorhombic, @ =4-463 + 0-01, 5=10-72 + 0-02,
¢=1313 A, measured at —140 °C.

D, from data obtained at 20 °C (Z=4), 1-63 g.cm-3;
Dy, at 20 °C, 1-59 g.cm~3. Absorption coefficient for
Mo K« rays (A=0-7107 A) u=9-4 cm-1. Space group,
from absent spectra, P2,2:2;.1

Table 1. Technical data concerning the intensity records

Expo- Number
sure of Temper- Cross
time  observed (sinf/A)max ature section
Zone  (hr) reflexions (A-1) (°c) (mm)
[100] 77 247 0-96 —130 0-4x0-4
[010] 94 140 1-10 — 142 0-4%x 05
[001] 71 90 1-03 — 142 0:6x0-6

Intensity records were obtained on zero-layer
Weissenberg exposures about [100], [010], and [001],
taken with filtered Mo K« radiation at low tempera-
tures (Table 1). The multiple-film technique was
used with thin copper foils inserted between films.
The crystal specimens were sealed in Lindemann glass
capillaries. The visually estimated intensities were
corrected for Lorentz and polarization factors by the
usual methods. Absorption effects were neglected since
#R=0-38-0-56 cm~! for Mo K« radiation. Preliminary
scale and temperature factors changed less than 3%,
in later stages of the analysis; the absolute scale was
established by correlation of the observed with the
calculated structure factors. Additional technical data
are collected in Table 1.

Determination and refinement of the structure

The Patterson functions P(vw) and P(uw) were cal-
culated from preliminary Mo Kx data obtained at
room temperature. From the Patterson maps the
positions of the chlorine atoms could be determined
without difficulty once it was recognized that the
two atoms almost completely overlap in the [010]
projection (Fig. 1(b)). An electron density projection
o(yz), calculated with 659, of the structure factors
whose signs were based upon the chlorine contribu-
tions, clearly showed the carbon and oxygen atoms.
This method worked less well for the projection along
[010], because the chlorine atoms contribute only to
about half of the structure factors F(hOI). Since the
main features of the molecule were now known, the
x parameters of the atoms in the dioxane ring could
be taken from a model. An electron density map

+ In & preliminary paper (Altona, Romers & Havinga, 1959)
the space group was erroneously reported to be P2,/n.
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Fig. 1. Electron-density projections of c¢zs-2,3-dichloro-1,4-
dioxane. (a) Projection along [100]; contour lines around
the carbon and oxygen atoms are drawn at 0, 2, 4, ... e.A~2,
those around the chlorine atoms at 0, 2, 5, 10, ... e.A-2,
(b) Projection along [010]; contour lines around C and O:
5, 7-5, 10, ... e.A~2; around Cl: 5, 10, 15, ... e.A-2
(c¢) Projection along [001]; contour lines around C and O:
5,8,10, ... e.A=2; around Cl: 5,8,12, ... e.A~2

o(zz) showed that this model was essentially correct;
however, serious overlap of atomic peaks in the
[010] and [001] projections soon prevented further
progress.

In view of our favourable experiences with low
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Table 2. Observed and calculated structure factors
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Fig. 2. Difference Fourier syntheses. (a) The final F,— F, projection along [100], showing the principal axes of the thermal
vibration ellipses of the chlorine atoms. Contour lines are drawn at 0, 0-4, 0-8, ... e.A2, negative contours are broken.
(b) Region around chlorine atom CI(1) before a correction was applied (see text) for the thermal anisotropy. Contours are
drawn at approximately 0, 0-3, 0-6, ... e.A~%; negative contours are broken.

temperature data in the analysis of the structure of
the trans-2,5-isomer (Altona, Knobler & Romers,
1963), we decided to continue the refinement by
using a new set of Mo K« reflexions collected at
—140 °C. Calculation of two cycles of structure
factors and Fourier syntheses (Fig. 1) yielded the
following reliability factors R and temperature
constants B:

F(Okl), R=14-9%, B=232 Az;
F(rOl), R=147%, B=1-77 Az;
F(rk0), R=13-2%, B=1-98 Az,

The structure was further refined in four successive
cycles of structure factors and difference syntheses
with contributions of the heavy atoms subtracted.
Atomic positions and individual isotropic temperature
factors were adjusted. Except in cases of severe
overlap, each projection was treated independently;
this was done partly in order to obtain a check upon
the accuracy of the positional parameters and partly
because systematic discrepancies were noted between
the observed high-angle F(00!) values derived from
the (0kl) and from the (207) films respectively (Table 2).
These discrepancies may be due to photographic
errors or to a fairly large temperature difference
between the two crystals. Such a difference could

occur if the a-axis crystal had not been placed in the
centre of the cold gas stream during the exposure.

The thermal vibrations of the chlorine atom were
markedly anisotropic (Fig.2(b)). A correction for
this effect was applied by substituting for each
chlorine atom two half-atoms placed 0-08-0-12 A
apart in the direction of maximum vibration (Kartha
& Ahmed, 1960; Vos & Smits, 1961). The final
separations were about 15% larger than those cal-
culated initially from the formulae proposed by
Kartha & Ahmed (1960). Although this method is
approximative, satisfactory results were obtained;
in the final difference maps no significant electron
density details remained in the vicinity of the chlorine
atoms (Fig. 2(a)).

In an attempt to find reliable hydrogen atom
positions, difference maps were calculated in which
only low-angle reflexions were used (sin §/4 < 0-55 A-1).
The hydrogen maxima showed up clearly with peak
heights of 0-6-0-8 e. A-2. Because of overlap, however,
some hydrogen parameters could not be determined.
We therefore preferred to insert these atoms into the
molecular model by accepting a C-H distance of
103 A and tetrahedral angles.

The final R indices, excluding non-observed re-
flexions, were:
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R(0kl)=6-3%, R(hO1)=7-3%, R(hk0)="7-1% .

The atomic scattering factors for carbon and oxygen
were those calculated by Berghuis, Haanappel, Potters,
Loopstra, MacGillavry & Veenendaal (1955), for
chlorine those by Tomiie & Stam (1958), and for
hydrogen those by McWeeny (1951). The difference
Fourier syntheses (at intervals of 1/128 of the cell
edges) and the corresponding structure factors were
calculated on a ZEBRA computer with programs
devised by Smits (1961). A list of the observed and
calculated structure factors is given in Table 2.
In order to retain a centre of symmetry in each
projection, the three-dimensional origin was shifted
according to the following scheme: [100], (0, —%, 0);
[010], (0,0, }); [001], (4,0, 0).

The agreement between the positional parameters
derived from each projection was satisfactory. Eleven
of the fourteen parameters that were determined
twice showed differences less than the sum of the
respective standard errors. None of the remaining
differences was possibly significant. Since the projec-
tion along [001] suffered from overlap effects (Fig. 1(c)),
the x parameters were taken from the [010] projection
and the y values from the [100] projection. The
z parameters of O(2), O(1), C(1), C(2) and C(4) are
weighted means. The final atomic positions are shown
in Table 3. Their standard errors were estimated by
Cruickshank’s (1949) method. Since only two-dimen-
sional methods were employed, these standard errors
might be too low and should perhaps be increased
by about 509,

Table 3. Final atomic coordinates (in fractions of the
cell edges) and standard deviations

(A, x10-3)
Atom z Y z
Cl(1) —0-0129 (3) 0-1206 (2) 0-1515 (2)
C1(2) —0-0161 (3) —0-1785 (2) 0-1580 (2)
o(l) —0-3000 (9) 0-0945 (6) —0-0252 (5)
0(2) 0-1555 (9) —0-0916 (5) —0-0140 (5)
C(1) —0-2470 (11) 0-0302 (8) 0-0653 (7)
C(2) —0-1140 (10) —0-0985 (7) 0-0439 (6)
C(3) 0-0900 (11) —0-0279 (7) —0-1109 (7)
C4) —0-0300 (13) 0-1012 (8) —0-0886 (7)
H(l) —0-441 0-005 0-100
H(2) —0-267 —0-150 0-001
H(3) 0-264 —0-012 —0-159
H(4) —~0-038 —0-078 —0-159
H(5) —0-096 0-141 —0-160
H(6) 0-105 0-160 —0-050

The central curvatures and the peak electron
densities are shown in Table 4. These values are of
the same order of magnitude as those found in the
low temperature projections of trans-2,5-dichloro-
dioxane. The individual isotropic temperature factors,
as well as the values of Bmin and Bmax for each
chlorine atom, are also given in Table 4. The direc-
tions of the vibrational axes, projected along [100],
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Table 4. Isotropic temperature factors B (A2), peak
electron densities po (e.A~2) and average central
curvatures (e.A-4)

Two values are shown for each chlorine atom, the one between

brackets pertains to the component in the direction of
maximum vibration

[100] [010] [001]
B g &%/or® B g, %[6r* B
cll) 165 387 675 165  * * 1-18
(2:50) (560) (3-05) (2-08)
Cl2) 168 389 625 1.65 * * 1-48
(2-44) (485)  (3-05) (2:48)
o(l) 229 155 200 117 208 305 1-38
0(2) 201 157 215 100 226 320 1-50
c(l) 188 106 140 131 156 255  1-22
c(2) 192 121 185 090 17-0 300 1-54
c(3) 195 112 160 112 153 250 154
C(4) 217 110 145 1-25 143 210 162
H 2:00 1-00 1-30

* The chlorine atoms suffer from overlap in the projection
along [010].

are shown. in Fig. 2. In the [010] and [001] projections
the maximum vibration vector almost coincided with
the x axis.

Conformation of the molecule

The dioxane ring has the chair form with one chlorine
atom (Cll) in the axial and the other (Cl2) in the
equatorial position (Fig.3). This conformation was
predicted earlier from dipole moment data (Altona,
Romers & Havinga, 1959). The bond distances and
angles are shown in Table 5 (see also Fig. 3). The

important features can be summarized as follows:

Table 5. Intramolecular distances, angles and
estimated standard deviations

Bond Distance c
C(1)-C1(1) 1-819 A 9x10-3 4
C(2)-C1(2) 1-781 7
C(1)-C(2) 1-528 11
C(3)-C(4) 1-513 11
C(1)-0(1) 1-394 9
C(2)-0(2) 1-425 12
C(3)-0(2) 1-466 9
C(4)-0(1) 1-473 12

Non-bonded

CI(1)---0O(1) 2-664 7

Cl(1y--- C12) 3-207 4

Bonds Angle G

0(1)-C(1)-C(2) 110-8° 0-7°
C(1)-C(2)-0(2) 112-3 0-7
0(2)-C(3)-C(4) 109-1 07
C(3)-C(4)-0(1) 110-8 0-7
C(1)-O(1)-C(4) 111-6 06
C(2)-0(2)-C(3) 108-5 0-6
Cl(1)-C(1)-O(1) 111-3 0-5
Cl(1)-C(1)-C(2) 111-8 0-6
C1(2)-C(2)-C(1) 112-0 0-6
CL(2)-C(2)-0(2) 105-5 0-6



1230

Fig. 3. Atomic distances and bond angles in
cts-2,3-dichloro-1,4-dioxane.

(1) The axial carbon-chlorine bond distance
(1-819+0-009 A) is significantly larger (p=0-2%:
Cruickshank & Robertson, 1953) than the equatorial
one (1-781 +0-007 A).

(2) The bond C(1)-0(1) (1-394 +0-009 A), adjacent
to the axial C(1)-Cl(1) bond, is perhaps (p=1-5%)
shorter than the carbon-oxygen bond in dimethyl
ether (1-416+0-003 A, Kimura & Kubo, 1959). The
bond distance of C(2)-0(2), adjacent to the equatorial
C(2)-Cl(2) bond, appears to be normal (1:425+
0-012 A).

(3) The bond distances of C(4)-0(1) (1-466 +0-013 A)
and C(3)-0(2) (1473 +0-010 A) are relatively large
and deviate significantly (p=0-1%) from the C-O
bond distance in dimethyl ether quoted above.

(4) The ‘equatorial half’ of the molecule, consisting
of the atoms Cl(2), C(2), O(2) and C(3), does not
deviate significantly from planarity. The equation of
the plane, obtained by a least-squares procedure, is:

0-2758X +1-1035Y +0-5421Z+1=0 .

All four atoms are at distances less than 0-007 A
from this plane. The angles between the bonds lying
in the plane, Cl(2)-C(2)-0(2) (105:5+0-6°) and
C(2)-0(2)-C(3) (108-5+0-6°) are smaller than the
corresponding angles in the ‘axial half’.

Not too much stress should be laid on relatively
small differences in bond lengths in view of the
uncertainties in the estimation of two-dimensional
standard errors (see preceding section).

One might expect some steric strain to be present
in this molecule, owing to the close approach of the
two chlorine atoms (3-207 A). However, it is remark-
able that, compared with the conventional chair model
(tetrahedral angles), the vectorial angle between the
C-Cl bonds is narrowed from 705 to 66°, and the
dihedral angle is only 50-5 instead of 60°.

The bond distances and angles in the ‘axial half’ of
the molecule resemble those occurring in the trans-2,5-
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isomer, in which compound a long axial C-Cl bond
(1-845 A) is present adjacent to a short C—O bond
(1-388 A; Altona, Knobler & Romers, 1963). Similar
effects occur in trans-2,3-dichloro-1,4-dioxane (Altona
& Romers, 1963).

Molecular environment

All intermolecular atomic distances <4-4 A have been
calculated on the X; computer, University of Leiden,
using a program (A 200) written in ALGOL 60 by
Mr H. L. Jonkers. A selection of these distances is
listed in Table 6 (see also Fig. 4).

Table 6. Some intermolecular distances* and angles

Atoms Distance
0(2) ++-0(1) [0l 314 A
0(2) ---C(1) [0]z 314
0(2) ---H(l) [0]x 2-55
0(2) ---H(2) [0] 2-65
C(3) ---0(1) [0]x 3-22
Cl2)---H({1) [0]z 2-92
Cl2)---H(3) [1iz 2:96
H(5) -+ Cl{2) [1]» 2-98
Cl(1)---0(1) [2]z 3-60
Cl2)--- 0(2) [2)y 3-43
C1(2)--- C12) [3] 3-30
Angle
Z C()=CL(1)--- C2) [3] 147-3°
Z C(2)-ClI(2) - - - Cl{1) [3]~y 161-9

* The four molecules are numbered [C], [1], [2] and [3],
with:
[0] at x, Y z;
(1] at 3—=z, —y, }+z;
[2] at i+, d—y, —z;
[8] at —=z, 44y, t—=z.
Translation of the unit cell along one of the crystallographic
axes is indicated by a subscript.

The main short approach distances occur between
molecules related by the unit translation along [100],
indicating a close stacking in this direction. Of par-
ticular interest are the separations of C(3)-:-0(2)
(322 A) and of O(2)---C(1) (3-14 A). Similar or
shorter non-hydrogen bonded C - - - O distances have
been reported in recent years (Sime & Abrahams, 1960;
Chu, Jeffrey & Sakurai, 1962; Romers, 1963); how-
ever, all of these were found to ocecur between mole-
cules in which at least one of the atoms involved
takes part in a m-bonded system.

The packing is less dense in all other directions,
in accord with the easy cleavage of the crystals along
planes in the [100] zone. Noteworthy is the short
distance (3:303 + 0-007 A) that occurs between axial
and equatorial chlorine atoms approximately in the
directions [011], [011] efc. The approach is even
closer than that found in trans-2,5-dichloro-1,4-dioxane
(3-38 A) and in B-2-chloro-p-benzoquinone-4-oxime
acetate (3-33 A, Fischman, MacGillavry & Romers,
1961). A short Cl - - - Cl distance (3-34+0-04 A) also
occurs in solid chlorine (Collin, 1952).
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Fig. 4. Crystal structure of ¢is-2,3-dichloro-1,4-dioxane. The four symmetry-related molecules are numbered [0], [1], [2], and [3]
(see Table 6). (a) Projection of the structure along [100], molecules shown in dotted outlines belong to a layer of unit cells
translated —1 along z. (b) Projection along [010]. For clarity, molecule [2]—= is not shown.
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Proton magnetic resonance

It is of interest to note that a single crystal of cis-
2,3-dichloro-1,4-dioxane contains either right-handed
or left-handed molecules. Here we have an example
of an asymmetric conformational transformation
induced by crystallization (c¢f. Havinga, 1954). The
solution is optically inactive, because at room tem-
perature in the liquid phase the equilibrium between
the two enantiomeric conformations (ea and ae) is
readily established; 7.e. an axial atom becomes an
equatorial one and wvice wersa by chair—chair inter-
conversion.

Proton magnetic resonance (p.m.r.) spectra were
taken at various temperatures in order to verify
these conclusions (Smidt & Altona, 1962). At tem-
peratures between +20 and —100 °C only one sharp
resonance peak is observed for the two non-equivalent
protons at C(1) and C(2); hence the ring inversion
is rapid to the extent that the chemical shifts of
equatorial H and axial H are averaged to a single
value. This ‘collapsed’ signal is found at higher field
(v=4-37) than that of the (ee) protons in the trans-
2,3-isomer (7=4-10) in accordance with a well known
rule (Lemieux, Kullnig & Moir, 1958). At —118 °C
the inversion rate is reduced sufficiently to effect an
appreciable broadening of the resonance signal and
at —128 °C two lines are observed. This temperature
is surprisingly low. Recent p.m.r. studies have shown
that splitting of the appropriate resonance peaks of
cyclohexane (Jensen, Noyce, Sederholm & Berlin,
1960; Moniz & Dixon, 1961) and of several halogeno-
cyclohexanes (Berlin & Jensen, 1960; Reeves &
Stremme, 1960, 1961; van Dort & Sekuur, 1963)
takes place at temperatures between —60 and — 80 °C.

After completion of this work a publication appeared
(Caspi, Wittstruck & Piatak, 1962) in which a con-
formation of cis-2,3-dichloro-1,4-dioxane in solution
was derived from p.m.r. data. The spectrum is in
excellent agreement with that taken at 20 °C by
Smidt & Altona (1962). However, the conclusion that
the molecule probably exists in solution as a rigid
boat conformation is unjustified as it was not based
upon measurements performed at a sufficiently low
temperature. Furthermore, the infrared spectra of the
cis compound in the solid state (KBr disc) and in
solution (CSz) are practically identical (Altona, 1963).
This fact also indicates that the (ea) chair form
occurring in the crystal is also the preferred one in
solution.

We are grateful to Prof. E. Havinga for suggesting
this research and for his kind interest. We wish to
thank Dr Carolyn Knobler for performing many
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tedious calculations during the early stages of the
analysis, Miss E. Alzerda and Mr E. van Heijkoop
for technical assistance, and Dr A. Vos and Mr
H. Schurer (University of Groningen, The Nether-
lands) for their valuable cooperation in carrying out
the calculations on the ZEBRA computer.
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